

TOTSCo PUBLIC

TOTSCo Hub API Specification

A guide for developers

Version 1.0

21 July 2023

TOTSCo PUBLIC

Contents

1 Introduction .. 4

1.1 Communications providers and Managed Access Providers .. 4

1.2 Change log ... 4

1.3 Contributing authors ... 4

1.4 Stakeholders and document approvals ... 4

1.5 Abbreviations and definitions ... 5

2 TOTSCo Hub integration specification ... 6

2.1 Letterbox API specification .. 6

2.1.1 The letterbox post API Interface .. 7

2.1.2 URI format ... 7

2.1.3 API details .. 8

2.1.4 Version Control .. 8

2.1.5 Envelope elements .. 9

2.1.6 Auditing requirements ... 11

2.1.7 Message formats ... 12

2.1.8 Letterbox responses .. 12

2.2 Directory API

specification19……………………………………………………………………………………………19

2.2.1 Directory API details .. 19

2.2.2 For a specified RCP on the hub .. 19

2.2.3 For all RCPs on the hub .. 20

2.2.4 Directory API Response Structure ... 22

3 Security Implementation ... 25

3.1 Transport Layer Security (TLS) ... 25

3.2 API Authentication and Authorisation .. 26

3.2.1 Process to request and generate OAuth2 Access Token from TOTSCo Hub 27

TOTSCo PUBLIC

3 of 30

4 Routing ID Summary ... 28

5 Appendix A – Messaging version control ... 29

Figures

Figure 1 – Post Office JSON Message Envelope Structure ... 11

Figure 2 – Directory JSON Structure ... 24

TOTSCo PUBLIC

4 of 30

1 Introduction

This TOTSCo Hub API Specifications document complements and supports the One Touch Switch (OTS)

Message Specification and the OTS Industry Process document. This documentation is available from

www.totsco.org.uk.

This document contains the definition of the message envelope structure as well as the letterbox API

specification and Directory API specification.

The intended audience of this document is:

• Representatives of communications providers (CPs) who are responsible for the technical

implementation of the communication between that CP and the TOTSCo Hub.

• Representatives of Tech Mahindra, the vendor chosen by TOTSCo to implement the Hub.

1.1 Communications providers and Managed Access Providers

The TOTSCo Hub will initially provide services for retail CPs to exchange messages in support of the OTS

process. In the future the Hub may provide services in support of other processes requiring message

exchange between CPs who may not be the retailers. So, this document used the generic term of CP.

Note that retail CPs may choose to engage an agent, such as a managed access provider (MAP). Any reference

in this document to a requirement against a CP would apply to a MAP providing services to an RCP.

1.2 Change log.

Version

Date

Changed By

Reason for change

v1.0

20/07/2023

HUB design team

API Specification for the TOTSCo Hub. Issue 1.0 version

1.3 Contributing authors

Author Organisation

Dave Stubbs Virgin Media

Niall Gillespie BT

Hub design team Tech Mahindra Ltd.

1.4 Stakeholders and document approvals

Stakeholder Name

and Title

Role Reviewer/Approver/

Author/Contributor

Signature/Electronic

Approval

Date

Richard Steele CTO, TOTSCo Approver

Tom Merritt
Business Analyst,

TOTSCo

Approver

David Norbury
Head of Delivery,

TOTSCo

Approver

Jason Bird CSO, TOTSCo Approver

TOTSCo PUBLIC

5 of 30

Alex Simmons
Technical lead,

TOTSCo

Approver

Niraj Suvarna Enterprise Architect Reviewer

Rahul Mehta Solution Architect Reviewer

Nimesh Soni Solution Architect Reviewer

Premanand Rao Infrastructure design Reviewer

Shailesh Pingle Delivery Manager Reviewer

Vishal Dumbre Security Design Reviewer

Rahul Kumar TOTSCo Hub Design Author/Contributor

Vikash Prasad TOTSCo Hub Design Author/Contributor

Nitesh Barnwal TOTSCo Hub Design Author/Contributor

1.5 Abbreviations and definitions

Abbreviation / term Meaning / definition

TOTSCo The One Touch Switching Company

www.totsco.org.uk

TOTSCo Hub This is the formal name used by TOTSCo to refer to the hub which will provide

services to CPs in support of the OTS process, and possibly for other industry

processes in the future. TOTSCo have chosen Tech Mahindra to implement and

operate the TOTSCo Hub.

CP Communications provider

This is a term defined by Ofcom in their General Conditions of Entitlement as a

“means a person who provides an Electronic Communications Network or an

Electronic Communications Service”.
RCP Retail Communication Provider

This term was first defined in the OTS Industry Process to define those CPs who

provide services at the retail level to end-users, both consumer and business.

MAP Managed Access Provider

This is a commonly used term within the UK telecoms industry to refer to parties

who provide integrations services to CPs but are not themselves CPs.

Error Code The code that will be returned in a synchronous message as part of the Hub’s
validation of incoming messages.

Fault Code The code that will be returned in an asynchronous message by the Hub to the

sender after it has accepted and validated the message but has been unable to

deliver the message to the recipient.

http://www.totsco.org.uk/

TOTSCo PUBLIC

6 of 30

2 TOTSCo Hub integration specification

The TOTSCo Hub provides the mechanisms to deliver messages from one party to another in an environment

where it is impractical for all parties to talk to each other directly. The parties will be CPs or their agents such

as MAPs.

The analogy of a post office is appropriate as TOTSCo are the agent who will accept a sender’s message and

will be responsible for delivering it on their behalf to the intended recipient. Senders do not need to find a

way to deliver the message directly. In architecture parlance, this is a hub and spoke mechanism as opposed

to point to point.

Any messaging system requires standards to ensure interoperability, and to that end all messages sent via

the TOTSCo Hub will be represented in JSON format and delivered using REST APIs.

Messages are made up of:

• an envelope containing the delivery data needed for the TOTSCo Hub to route the message to the

correct destination, including a return address for replies and failures,

• and a message body.

The Hub does not need to know anything about the message body – that information is only for the sender

and recipient to know and understand.

2.1 Letterbox API specification

The TOTSCo Hub letterbox API specification defines how messages will be sent to and received from the

TOTSCo Hub. The API specification is separate from the documentation of the message formats for the

industry processes (e.g., OTS), as the Hub does not need to know anything about the message format itself.

The Hub acts on a routingID which may or may not be related to the message format. Examples of current

routing IDs are described in §4 of this document.

The requirement is that both the TOTSCo Hub and the TOTSCo Hub users (the CPs) all implement the same

API specification. This makes it simpler to implement the messaging protocols in a uniform way, as well as

supporting the ability to perform peer to peer testing.

A sample definition of the letterbox API specification can be found at the following URL:

 https://app.swaggerhub.com/apis/TOTSCO/letterbox/0.4.0

The letterbox provides a mechanism to deliver a message via the TOTSCo Hub to an identified recipient. The

TOTSCo Hub will only process the message envelope, to understand what/who it is for and to be able to

process it correctly and will not process the message body (other than to pass it on to the recipient).

For example, certain types of messages sent to the Hub will be subject to a delivery timer with backoff and

fallout policies. The policies for delivery messages will be industry-agreed and will be defined in the Hub and

not specified by the sender.

Please note, the letterbox API specification is not specific to any single messaging or industry process. It is

designed as a standard reusable interface; to facilitate a hub and spoke message distribution framework; to

support the adoption of near real time message processing and guaranteed message delivery; and where

peer to peer interfaces and mechanisms (e.g., email, SFTP, etc) would be impractical or lack the security or

functionality that the Hub provides.

https://app.swaggerhub.com/apis/TOTSCO/letterbox/0.4.0
https://app.swaggerhub.com/apis/TOTSCO/letterbox/0.4.0

TOTSCo PUBLIC

7 of 30

2.1.1 The letterbox post API Interface

The letterbox post API takes a JSON message from an authorised source and delivers it to an identified

destination. The information needed to route that message is defined within the message envelope

contained within the JSON message.

In summary:

• Messages are delivered using a “push push” model – i.e., the source CP will push a message to the

TOTSCo Hub, and the Hub will onwards push the message to the destination CP.

• Message exchange between CPs via the TOTSCo Hub is asynchronous, so the “push push” model
applies to both requests in one direction and responses in the other direction.

• Messages will be pushed using https post with TLS v1.3.

• OAuth2 token will used be used to authorise the sender of each https request to the recipient.

When the TOTSCo Hub receives a message from a CP (or a MAP), the OAuth2 credentials of the sender of the

message will be matched against the source information in the envelope to ensure the message originates

from an authorised sender and is not being spoofed.

Similarly, when a CP (or a MAP) receives a message from the Hub, they will also check that the OAuth2

credentials to ensure the message originated from the Hub and is not being spoofed.

2.1.2 URI format

The API URI format provided by the TOTSCo Hub, and each CP (or MAP) will conform to the following

convention.

https://{fqdn}/letterbox/{version}/post

The elements of the URI are as follows.

URI Element Description Format

FQDN The Fully Qualified Domain Name of the provider of the

letterbox API. The TOTSCo Hub FQDN values are listed in

the next table. Each CP will need to provide their FQDN

(possibly for their chosen MAP) as part of their Hub

endpoint configuration.

Compliant with

standard RFC 1035

Version This is the version number of the letterbox API. This

version will only ever change if there is a substantial

update in the way messages are processed by the TOTSCo

Hub. If a new version is introduced, the previous versions

will remain in service for compatibility with existing

processes.

n.n

Initially “1.0”

TOTSCo PUBLIC

8 of 30

The FQDN values used by the TOTSCo Hub will be:

Environment FQDN

SIT (Simulator) sit.otshub.totsco.co.uk

Pre-production preprod.otshub.totsco.co.uk

Production prod.otshub.totsco.co.uk

Note the use of the different domain of totsco.co.uk – this is intentionally different to the totsco.org.uk

domain used for TOTSCo’s public facing website and email addresses.

Each CP/MAP will need to provide their FQDN values and are encouraged to use similar naming conventions

for SIT, pre-production and production environments.

2.1.3 API details

Field Value

API Name TOTSCo-LetterBoxAPI

Context letterbox

Version 1.0

Resource post

Transport Level

Security

https, TLS 1.3

Port The TOTSCo Hub will expose their API using the standard port 443 for https.

It is recommended that CPs / MAPs also expose their API on port 443, but an

alternative port number may be specified in the endpoint configuration if

required.

Request Format application/json

Request Headers Authorization, Accept, Content-Type: text/plain; charset=UTF-8

Tags totsco

2.1.4 Version Control

TOTSCo Hub will support API versioning, up to a maximum of five API versions. The current version along

with four previous versions. For any major or minor changes, the API version will be updated and notified

through TOTSCo communication.

e.g. If there are some minor changes, API version will be upgraded from version 1.0 to 1.1 and for any major

changes the API version will be upgraded from version 1.0 to 2.0.

TOTSCo PUBLIC

9 of 30

2.1.5 Envelope elements

Every message sent through the Hub letterbox API must have an envelope and a message body.

• This document defines the envelope.

• The message format documents for the relevant industry process define the body – this document

does not repeat those specifications.

The envelope contains the addressable information needed to identify and authenticate the message’s

originator – the “source”, and the intended recipient – the “destination”.

The envelope also contains a “routingID” which the Hub will use to determine how and where to send the

message. Every message specification will define how the routingID should be populated. The Hub will also

use the routingID to determine the delivery policy for the message.

Finally, there is an array element called “auditData” that must be used to provide information to TOTSCo for

reporting to Ofcom and industry, where defined in each industry process.

The example below shows a completed envelope, with sample values including audit information. The

“_messageBody” would be where the specific message content will be defined – the body is not processed

by the TOTSCo Hub.

{
 "envelope": {
 "source": {
 "type": "RCPID",
 "identity": "RBCD",
 "correlationID": "XYZ987"
 },
 "destination": {
 "type": "RCPID",
 "identity": "RCBA",
 "correlationID": "ABC123"
 },
 "routingID": " residentialSwitchMatchRequest",
 "auditData": [
 {
 "name": "auditFieldName",
 "value": "auditFieldValue"
 },
 {
 "name": "auditFieldName",
 "value": "auditFieldValue"
 }
]
 },
 "_messageBody": {
 "_comment": "The real message body would appear here in plain text”.
 }
}

The following table defines each element of the envelope:

JSON element Description Format Notes

envelope A container defining the delivery information for any

associated message.

Object Required

source A container defines the originator of the message and

represents the return address for any message

requiring a response.

Object Required

TOTSCo PUBLIC

10 of 30

JSON element Description Format Notes

destination A container representing the destination of the

message and used by the TOTSCo Hub to identify the

correct recipient letter box to deliver it to.

Object Required

source/type

destination/type

The name of the directory list where the identity can be

found and validated. E.g., “RCPID” for OTS messages.
String Required

source/identity

destination/identity

The identity of the sending or receiving entity for the

message as defined in the directory list selected. E.g.,

the RCPID value.

String Required

source/correlationID

destination/correlati

onID

A string of characters that the message originator will

recognise and allow matching of a reply to a request

message.

In a source element, the correlationID must always be

provided, the format can be anything the originator

chooses to support their messaging process but should

be sufficiently unique to allow correlation of response

with request over a reasonable period.

In a destination element, the correlationID would only be

populated when the message is being sent in response

to a message previously sent to you. In that case the

correlationID will be the value that was sent by the

original sender of the message – i.e., it is being reflected

to them.

String Required

/Optional

routingID The routingID that the Hub will use to route the message

to the recipients desired destination. Each messaging

specification will have its own requirements for how this

value is populated, but the value must be supported by

the Hub and published in the directory.

String Required

auditData A list of name value pairs that TOTSCo will use for

auditing and reporting. Each messaging specification will

have its own requirements for audit data. An example is

the error code for a failure response.

Array Optional

auditData/name The text name of the property being provided for

auditing

String Required

auditData/value The value associated to the named entity above. String Required

_messageBody This is the message to be sent to the recipient. The

actual element name should be based on the message

String Required

TOTSCo PUBLIC

11 of 30

Figure 1 – Post Office JSON Message Envelope Structure

The container structure of a Post Office message is displayed above, the message object is separated from

the envelope to allow changes in the content of either structure without affecting each other.

The reason every message must have a source correlation ID is that, as well as the recipient of the message

being able to reply to you, in the event of a failure to deliver a message the TOTSCo Hub can return a delivery

failure notification, even if the message was a response message. You can get delivery failures for response

messages as well as request messages.

2.1.6 Auditing requirements

To allow TOTSCo to support the Ofcom reporting requirements for OTS, the audit Data in the envelope must

be populated according to the following rules when sending OTS messages.

• faultCode – If a failure message is being sent through the Hub, the fault code in that failure message

must also be replicated in the audit data.

Here is an example showing a fault message sent through the Hub.

{
 "envelope": {
 "source": {
 "type": "RCPID",
 "identity": "RBCD",
 "correlationID": "XYZ987"
 },
 "destination": {
 "type": "RCPID",
 "identity": "RCBA",
 "correlationID": "ABC123"
 },
 "routingID": "residentialSwitchMatchFailure",
 "auditData": [

 {
 "name": "faultCode",

JSON element Description Format Notes

being sent. Please refer to §4 for the messages

supported for the process described in this document.

TOTSCo PUBLIC

12 of 30

 "value": "9001"
 }
]
 },
 "residentialSwitchMatchFailure": {
 "faultCode": "101",
 "faultText": "failure to match with the supplied information”.
 }
}

2.1.7 Message formats

The TOTSCo Hub API specification defines the envelope of the JSON message only, and the API for sending

the messages. These are the only parts of the JSON message the Hub will be responsible for understanding.

Each message will also contain a message body, and this is the element that the recipient of the message

must understand. Both parts together form the entire JSON message.

There may be hundreds of supported message bodies the Hub will deliver, those defined in this document in

section §4 relate only to the process described by this document. Each industry process utilising the TOTSCo

Hub (e.g., OTS) will have its own message format document that defines the message body.

Should any change be made to the API or envelope specification, that change will apply to every messaging

process, so the API and envelope specification must be agnostic of those processes.

2.1.8 Letterbox responses

Synchronous error responses

The letterbox API REST interface is synchronous, meaning that when a message is sent to the letterbox it will

reply within the same communication session. That reply does not contain a JSON message on a successful

post as its purpose is only to acknowledge receipt of the message being delivered to the letter box. However,

on a failure, a small JSON error structure will be returned describing the nature of the error.

The letterbox APIs will acknowledge message receipt with a HTTP 202 response code, the definition of which

is as follows: “The request has been accepted for processing, but the processing has not been completed. The

request might or might not be eventually acted upon and may be disallowed when processing occurs.”

Where the TOTSCo Hub is the recipient of a message sent by a CP (or MAP), the 202 responses will be sent

once the Hub has validated the message:

• Validated the OAuth credentials.

• Validated the format of the message (e.g., valid JSON message)

• Validated the contents of the envelope.

• Verified that the sender is authorised to send on behalf of the defined source.

• Verified that the source CP and destination CP is valid.

If the message fails to be accepted by the API, various 400 errors may result subject to the OAuth processing

of the API, or validation of the received message. For example, 401 – Unauthorised, or 403 – Forbidden for

authentication errors, or in the event of a JSON format failure, error 400 – Bad request will be returned.

The following table defines the list of http codes for the different errors during validation of the message.

HTTP Status Code Exception Name / Code Error Description

400 BAD REQUEST
The API cannot convert the payload data to the

underlying data type. The data is not in the

TOTSCo PUBLIC

13 of 30

The synchronous acceptance of the message must extract the source element as a minimum to determine if

the sender is valid and authorised to be sending messages into the Hub. An invalid source will result in a 401

or 402 error.

For the error responses, the following JSON will be returned, there will be no envelope.

{

 "errorCode": "9002",

 "errorText": "Unknown or invalid source type. "

}

The content of this message is as follows.

 The following table defines the list of http codes and error codes the Hub will generate in the event of a

validation error before it has accepted the message for delivery. Please note that the validation will be

done in sequence one at a time and the error response will be sent accordingly.

No. Validation http code Error code

1 oAUTH2 token validation 401 NA

2 Validate JSON Message Object structure 400 NA

3 Validate Message Envelope attributes 400 NA

4 Validate if Source Type is valid 400 9002

5 Validate if Source RCPD Id is valid 400 9003

6 Validate if Source RCPD ID account status is valid 403 9003

7 Validate if Destination Type is valid 400 9000

HTTP Status Code Exception Name / Code Error Description

expected format. A required field has not been

supplied.

A validation error occurred.

401 UNAUTHORIZED ERROR
The request requires authentication and valid

credentials were not provided

403 FORBIDDEN ERROR

Valid credentials have been provided, but the

authorisation level is not sufficient for the

request

404 OPERATION NOT FOUND The requested resource was not found

405 Method Not Allowed
The service does not support the HTTP method

(e.g., POST, GET)

429 Too Many Requests

OTS Hub exceeded the quota. You can access API

after YYYY-MMM-DD xx: xx:xx+xxxx UTC.

Note: The date and time mentioned above will be

one minute after first message arrives.

500 INTERNAL SERVER ERROR
An unexpected error has occurred while

processing the request

503 Service Unavailable
The server cannot handle the request for a

service due to temporary maintenance.

JSON element Description Format

errorCode A numeric description of the specific error Integer

errorText A description that represents the nature of the error and can be

used by the message originator to determine remedial action.

String

TOTSCo PUBLIC

14 of 30

No. Validation http code Error code

8 Validate if Destination Id is valid 400 9001

9
Validate if Destination RCPD ID account status is

valid
403 9001

10
Validate Source type and ID permitted from

originating location
401 9004

11 Validate if Routing Id is mapped to the Source RCP 400 9010

12 Validate RoutingID 400 9012

The following table gives the sample response the HUB will generate in the event of an error.

Code Message Description Sample response

400 Bad Request Schema validation failed in the Request:

[Path '/directory’] Object has missing

required properties ([\"listID\"])

{
 "code": "400",
 "message": "Bad Request",
 "description": " Schema validation
failed in the Request: [Path
'/directory’] Object has missing
required properties ([\"listID\"]), "
}

401 Unauthorized Access failure for API: /directory/v1.0,

version: v1.0 status: (900901) - Invalid

Credentials. Make sure you have provided

the correct security credentials.
Note: code 900901 is an internal process code and not an

error code.

{
 "code": "900901",
 "message": "Invalid Credentials",
 "description": "Access failure for
API: /directory/v1.0, version: v1.0
status: (900901) - Invalid
Credentials. Make sure you have
provided the correct security
credentials.”
}

400 Unknown or missing destination Type

{
 "errorCode": "9000",
 "errorText ": "Unknown or missing
destination Type."
}

400 Unknown or invalid source Type.

{
 "errorCode": "9002",
 "errorText ": "Unknown or invalid
source Type."
}

400 Unknown or invalid routing ID.

{
 "errorCode": "9012",
 "errorText ": "Unknown or invalid
routing ID."
}

TOTSCo PUBLIC

15 of 30

The below diagram shows the flow of the message validation when it is received in the Hub.

TOTSCo PUBLIC

16 of 30

Asynchronous post office faults and messages

In the event of the post office being unable to deliver a message to its intended recipient, or if status update

messages are sent because of a delivery policy, the post office will create a message back to the originator of

the message in the following format.

{

 "envelope": {

 "source": {

 "type": "RCPID",

 "identity": "TOTSCO"

 },

 "destination": {

 "type": "RCPID",

 "identity": "RCBD",

 "correlationID": "ABC123"

 },

 "routingID": "messageDeliveryFailure",

 "auditData": [{

 name: "originalDestinationType",

 value: "RCPID"

 },

 {

 name: "originalDestination",

 value: "RMNK"

 },

 {

 name: "originalRoutingID",

 value: "residentialSwitchMatchRequest"

 },

 {

 name: "faultCode",

 value: "9008"

 }

]

 },

 "postOfficeMessage": {

 "code": "9008",

 "text": " Unable to deliver the message to the destination, timed out.",

 "severity": "failure"

 }

}

The post Office Message body describes a notification to the sender of the original message of a failure to

deliver the message. The source information will represent the TOTSCO Hub, and the audit data will contain

the original intended message recipient and destination. The originators correlation ID will be returned in

the destination information. Note that the source does not contain a correlationID, the postOfficeMessage

cannot be replied to as it is a notification, and therefore no correlationID is required.

The content of this message then describes the notification information.

JSON element Description Format

postOfficeMess

age

Container for messages from the post office Object

Code A number that represents the nature of the fault and can be used by

the message originator to determine remedial action.

Integer

Text A description of the associated response code String

TOTSCo PUBLIC

17 of 30

The following table defines the list of response codes the post office will generate in the event of a message

delivery failure.

Severity An indicator of the nature of the message about the processing of

the originators' message. Values will include, “information”,
“warning”, “failure”.

String

Code Text Severity

9005 Unable to deliver the message to the destination, no valid route. Failure

9006 Unable to deliver the message to the destination, rejected, invalid

message format.

Note: message sent if destination endpoints reject message and

returns http_400 error response.

Failure

9007 Recipient rejected message.

Note: message sent if destination endpoints reject message and

returns http_404 error response.

Failure

9008 Unable to deliver the message to the destination, timed out.

Note: when destination connection is down and returns http_5xx

error or timed out after multiple retries

Failure

TOTSCo PUBLIC

18 of 30

The below diagram shows the flow of the message delivery after is has been validated and

assigned to delivery queue.

TOTSCo PUBLIC

19 of 30

2.2 Directory API specification

The TOTSCo Hub maintains a central directory of all entities involved in the sending and receiving of messages

using the TOTSCo Hub. To be able to send message via the Hub, all users need access to the directory to

obtain the directory list.

2.2.1 Directory API details

The directory API returns two types of directory information.

1. For a specified CP on the hub

2. For all CPs on the hub, (a list type for all parties of that specific list type, or all parties documented

on the Hub.)

2.2.2 For a specified RCP on the hub

To get the details of a specified RCP, the listID and identityID with RCPID as value will need to be
passed as query parameter in GET method as per below format.

https://{fqdn}/letterbox/{version}/directory?list={listID}&identity={identityID}

The elements of the URI are as follows.

URI

Element

Description Format/example

FQDN The Fully Qualified Domain Name of the provider of the directory API. The

TOTSCo hub FQDN will be provided by TOTSCo.

Compliant with

standard RFC

1035

Version This is the version number of the directory API. This version will only ever

change if there is a substantial update in the way messages are processed

n.n (e.g., 1.0)

Field Value

API Name TOTSCo-DirectoryAPI

Context /letterbox

Version 1.0

Description To send message via the hub, all users need access to the directory to obtain the

directory list.

Tags totsco

Transport Level Security https, TLS1.3

HTTP Method POST

Resources /directory

Request Format text/plain

Request Header Authorization, Accept, Content-Type: text/plain; charset=UTF-8

TOTSCo PUBLIC

20 of 30

by the TOTSCo hub. If a new version is introduced, the previous versions

will remain in service for compatibility with existing processes.

listID This mandatory value specifies the entity types to be included in the

results. For example, RCPID.

Text (e.g., RCPID)

identityID This mandatory value specifies a specific identity to obtain the details for. If

this value is specified, the listID MUST also be specified.

Text (e.g., RGXD)

Note: Please refer to the section 2.2.4 for the directory response structure

Response Code:

The following table defines the list of response codes the HUB will generate in the event of an error

processing Directory API call.

Code Message Description Sample response

400 Bad Request Schema validation failed in the Request:

[Path '/directory’] Object has missing

required properties ([\"listID\"])

{
 "code": "400",
 "message": "Bad Request",
 "description": " Schema validation
failed in the Request: [Path
'/directory’] Object has missing
required properties ([\"listID\"]), "
}

401 Unauthorized Access failure for API: /directory/v1.0,

version: v1.0 status: (900901) - Invalid

Credentials. Make sure you have provided

the correct security credentials.
Note: code 900901 is an internal process code and not an

error code.

{
 "code": "900901",
 "message": "Invalid Credentials",
 "description": "Access failure for
API: /directory/v1.0, version: v1.0
status: (900901) - Invalid
Credentials. Make sure you have
provided the correct security
credentials.”
}

404 Not Found Invalid identityID, identityID not available in

directory hub.

identityID not found.

2.2.3 For all RCPs on the hub

To get the details of a specified CP, the listID and identityID with value as 'all' will need to be passed as a

query parameter in GET method as per below format.

https://{fqdn}/letterbox/{version}/directory?list={listID}&identity=all

The elements of the URI are as follows.

URI Element Description Format/example

TOTSCo PUBLIC

21 of 30

FQDN The Fully Qualified Domain Name of the provider of the directory API. The TOTSCo

hub FQDN will be provided by TOTSCo.

Compliant with

standard RFC

1035

Version This is the version number of the directory API. This version will only ever change if

there is a substantial update in the way messages are processed by the TOTSCo hub.

If a new version is introduced, the previous versions will remain in service for

compatibility with existing processes.

n.n (e.g., 1.0)

listID This mandatory value specifies the entity types to be included in the results. For

example, RCPID.

Text (e.g., RCPID)

identityID This value should always be set as “all” Text

A JSON payload will be returned in the response as a part of API call.

Note: Please refer to the section 2.2.4 for the directory response structure

Response Code:

The following table defines the list of response codes the HUB will generate in the event of an error

processing Directory API call.

Code Message Description Sample response

400 Bad Request Schema validation failed in the Request:

[Path '/directory’] Object has missing

required properties ([\"listID\"])

{
 "code": "400",
 "message": "Bad Request",
 "description": " Schema validation
failed in the Request: [Path
'/directory’] Object has missing
required properties ([\"listID\"]), "
}

401 Unauthorized Access failure for API: /directory/v1.0,

version: v1.0 status: (900901) - Invalid

Credentials. Make sure you have provided

the correct security credentials.

Note: code 900901 is an internal process code and not an

error code.

{
 "code": "900901",
 "message": "Invalid Credentials",
 "description": "Access failure for
API: /directory/v1.0, version: v1.0
status: (900901) - Invalid
Credentials. Make sure you have
provided the correct security
credentials.”
}

TOTSCo PUBLIC

22 of 30

2.2.4 Directory API Response Structure

a) For a specified RCP

{
 "directory": [
 {
 "listType": "RCPID",
 "identityList": [
 {
 "id": " RGXD ",
 "tradingName": "Xenon Telecoms",
 "status": "live",
 "processSupport": [
 {
 "process": "OTS",
 "customerassistURL": "https://xyztelco.com/OTS",
 "salesassistURL": "https://xyztelco.com/OTS"
 }
]
 }
]
 }
]
}

b) For all RCPs on the Hub

{
 "directory": [
 {
 "listType": "RCPID",
 "identityList": [
 {
 "id": " RGXD ",
 "tradingName": "Xenon Telecoms",
 "status": "Live",
 "processSupport": [
 {
 "process": "OTS",
 "customerassistURL": "https://xyztelco.com/OTScustomer",
 "salesassistURL": "https://xyztelco.com/OTS"
 },

]
 },
 {
 "id": " RGXE ",
 "tradingName": "XYZ Telecoms",
 "status": "Suspend",
 "processSupport": [
 {
 "process": "OTS",
 "customerassistURL": "https://XYZtelco.com/OTScustomer",
 "salesassistURL": "https://XYZtelco.com/OTS"
 }

TOTSCo PUBLIC

23 of 30

]
 },
 {
 "id": " RDNB ",
 "tradingName": "VPN Telecoms",
 "status": "Live",
 "processSupport": [
 {
 "process": "OTS",
 "customerassistURL":
"https://VPNtelecom.com/OTScustomer",
 }
]
 }
]
 }
]
}

Response elements of the JSON document will be as follows.

JSON element Description Format Notes

directory An array of the lists for the directory information Object

array

Required

directory/listType The list type associated to the contained identities. String Required

directory/identityList An array of all the identity objects applicable to

the list type

Object

array

Required

identity/id The value assigned to an entity for the purposes of

messaging via the TOTSCo hub.

String Required

identity/tradingName Value to identify the trading name of the RCP
organization

String Required

identity/status A value indicating the production status of this

process. Current supported values are "live” and
“suspend”. A full list of the values and their uses
will be described in a future update.

String Required

Identity/ProcessSupport An array of objects defining what industry

processes this identity supports.

String Optional

processSupport/process The name of the industry process. Current

supported values are “OTS”.
String Required

processSupport/customerassistURL Website for CP to provide information on the OTS
process.

String Optional

processSupport/salesassistURL website for CP agents to assist on the sales
journey during the switching process.

String Optional

TOTSCo PUBLIC

24 of 30

Figure 2 – Directory JSON Structure

The container structure of the directory is displayed above. How many identities and lists you receive in your

result depends on your selection criteria.

The recommendation is to use this service nightly, or at the most weekly, to request a full list of all the latest

information.

If you have received a messaged from an unknown source ID, or that message contains a signing key that you

do not know, then you would request that single identity from the directory to update your local cache.

TOTSCo PUBLIC

3 Security Implementation

3.1 Transport Layer Security (TLS)

Messages will be pushed from the sender to the recipient (e.g., CP/MAP to Hub, or Hub to CP/MAP using

HTTPS. The TOTSCo Hub will expose its API using port 443. It is recommended that CPs / MAPs do the same,

but if they choose to use an alternative port as part of their endpoint configuration, this can be specified

within the TOTSCo CP portal.

The version of TLS supported will be 1.3. As all parties will be building new endpoints for implementation of

OTS, this will be backwards compatibility to work with version 1.2. The TLS will be a one-way TLS. For inbound

communication (message coming into the hub), all registering CP’s will be provided the TOTSCo hub public

key. This will need to be installed into the CP certificate key store. The public key will be shared during

onboarding or if the certificate key is changed / updated.

For outbound communication (messages being pushed to a CP), the TOTSCo hub will require the registering

CP to supply its own TLS certificate, which TOTSCo will then install into the hub’s certificate store. Registered

CPs will need to provide the public key to TOTSCo at the time of onboarding or subsequently whenever the

keys is changed, in order to maintain a successful and secure connection stream.

The CP server will require the implementation of a digital certificate issued by a certificate authority (CA).

Ideally the certificate needs to be a trusted by a root CA so the TOTSCo hub can validate its authenticity.

The HUB will support permissible ciphers to the following values, for both server and client usage:

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

The certificate created validates the CP, and its own service, so the FQDN should match the certificate

specified address path.

There are some responsibilities to ensure this security is meaningful:

• CPs / MAPs must ensure that the FQDN they have configured for the TOTSCo Hub is based on a valid

source, such as documentation retrieved directly from the TOTSCo website.

• CPs / MAPs must ensure that the FQDN they configure for their endpoint(s) via the TOTSCo CP portal

are valid for their organisation.

• The private keys associated with digital certificates must be held securely by the owning party.

• TOTSCo will ensure their implementation respects the values configured via the TOTSCo CP portal,

and that requests for changes are not accepted from unverified parties.

The TLS process ensures that the communication session between the TOTSCo hub and the CP is encrypted

and any transmissions are secure between the two parties.

TOTSCo PUBLIC

26 of 30

3.2 API Authentication and Authorisation

The API authentication process ensures that individual transactions within the communication stream are

validated as genuine and identified to the specific sending CP and TOTSCo hub. The OAuth 2.0 protocol will

be used to support this security process.

OAuth will provide token-based validation and authorisation for all communication between CP/MAP and

TOTSCo Hub.

Inbound Communication from CP to TOTSCo Hub:

Registered CPs will need to use an OAuth2 client to request an Access Token to successfully submit calls to

the Letter Box API within the TOTSCo hub. However, these need to be done via a CP OAuth 2.0 supporting

client / application as an intermediary between the CP API systems and the TOTSCo Hub OAuth 2.0 server.

Each CP will be provided the following information:

- Client ID

- Secret key

- OAuth2 token generation webservice URL for each of the source locations that will be configured by

the CP for sending messages to the HUB.

The Token generation URL, Client Id and Client Secret must be stored by the CP within the trusted database

store.

The CP system will use the OAuth2 token generation URL to request an access token from the TOTSCo OAuth

2.0 server, validated by the correct client Id and secret key being provided. Please refer to section 3.3.1 for

the process to generate access token.

Once the authentication process has successfully completed, the CP system can post messages to the TOTSCo

hub webservice. The OAuth2 token remains valid for a period of 1 hour. Any messages after the 1-hour period

will require a new OAuth2 authentication call to ensure that messages are successfully delivered to the hub.

Outbound Communication from TOTSCo Hub to CP:

Once this mechanism is live, effectively the process above will work in reverse. The TOTSCo Hub OAuth 2.0

client will request an access token from the receiving CP’s OAuth 2.0 server for validation. Upon successfully

completing this, outbound messages will then be pushed to the CP platform.

To support the OAuth2 inbound authorisation mechanism, each registered CP will need to have the following

elements in place:

- A deployment of an OAuth2.0 Server

- The creation of a client id for TOTSCo

- A generated secret key for TOTSCo

- A valid token key generation webservice URL. (This will need to encompass each of the CP endpoints

that will be configured to receive messages from the TOTSCo hub.)

If a CP is choosing to use the services of a MAP (Third party integrators) for their connection to the TOTSCo

hub, the CP will need to configure their endpoints to be the MAP connection points, and they will need to

inform TOTSCo which MAP they have selected, so that this can be configured within the TOTSCo hub and

messages successfully relayed through their chosen MAP.

The TOTSCo hub will securely store each registered CP clientid and secret key, token key generation

webservice URL in the HUB secure database. When a message needs to be pushed to a receiving CP endpoint,

TOTSCo PUBLIC

27 of 30

the TOTSCo hub will create a connection to the registered token key generation webservice URL, supplying

the credentials of the client Id and secret key in order to generate a valid OAuth2 access token. This token

will then be parsed within the https header of the message pushed, to the receiving CP endpoint, which will

validate the credentials to ensure the identity and transaction is genuinely from the TOTSCo hub.

3.2.1 Process to request and generate OAuth2 Access Token from TOTSCo Hub

3.2.1.1 Access Token Request

Given below is format of OAuth2 access token request.

Request URL: https://{fqdn}/oauth2/token

FQDN: fully qualified domain name with the host and port e.g., https://host:port

Use the provided request URL to generate OAuth access token using POST method.

Required Parameters:

Header Parameter Comments

Field Value

Authorization
Basic <Base64-encoded

client_key:client_secret>

This will convert the passed Client_Id

and Client_Secret into Base64-

encoded.

Content-Type application/x-www-form-urlencoded

Body parameter

Field Value

grant_type client_credentials

grant_type and its value

client_credentials need to be passed

inside x-www-form-urlencoded.

Field Description Type Notes

client_id
Client Id (will be provided by TOTSCo

Hub during onboarding)
String Required

client_secret
Client Secret (will be provided by

TOTSCo Hub)
String Required

3.2.1.2 Access Token Response

In a successful authorization grant type, the response will contain the access token and expiry time. Below

is an example of a successful response:

HTTP/1.1 200 OK

 Content-Type: application/json;charset=UTF-8

 Cache-Control: no-store

TOTSCo PUBLIC

28 of 30

 Pragma: no-cache

{

 “access_token”:”{OAuth2 Access Token}”,
 “token_type”:”bearer”,
“scope”:”default”
 “expires_in”:3600
 }

Field Description Type Default Value

access_token Access token will be used to call the API. String -

token_type Token type describes the type of the token. String Bearer

scope Scope of the access token. String default

expires_in Indicates the validity of token in seconds. String 3600

3.2.1.3 Exception

Below exceptions would be sent in OAuth2 token generation response:

Error

Code
Description Root Cause

400 Bad Request error found when invalid request value passed

401 Unauthorised Incorrect client credentials provided

404 Not Found when incorrect token generation URL is passed

405 Method Not Allowed when incorrect method type is passed

415 Unsupported Media Type when mandatory parameters are not passed

4 Routing ID Summary

The TOTSCo Hub will be capable of routing messages of any kind from many different industry

processes. Below is a sample list of the current known and proposed routing IDs.

The TOTSCo Hub will allow configuration of adding new routing IDs as and when required.

TOTSCo PUBLIC

29 of 30

Gaining Provider Losing Provider Post Office

residentialSwitchMatchRequest residentialSwitchMatchConfirmat

ion

messageDeliveryFailure

 residentialSwitchMatchFailure

residentialSwitchOrderRequest residentialSwitchOrderConfirmat

ion

 residentialSwitchOrderFailure

residentialSwitchOrderUpdateRequest residentialSwitchOrderUpdateCo

nfirmation

 residentialSwitchOrderUpdateFa

ilure

residentialSwitchOrderTriggerRequest residentialSwitchOrderTriggerCo

nfirmation

 residentialSwitchOrderTriggerFa

ilure

residentialSwitchOrderCancellationRe

quest

residentialSwitchOrderCancellati

onConfirmation

 residentialSwitchOrderCancellati

onFailure

5 Appendix A – Messaging version control

All messaging specifications that will be used by industry over the TOTSCo Hub will have the ability to define

their own requirements for version control. However, some basic principles for versioning are outlined below

for guidance in the event a message format is changed, to help define a standard process for versioning.

Normal practice for APIs is to use a version number in the URI, and indeed the letterbox API’s do have such

a version number so that if that API was to functionally change then a new version can both be created and

supported.

With messaging you can go one of two ways, either include a version number within a message or rename

the message itself.

In a distributed environment, it is important to know what the party you are sending messages to supports.

So, the key decision factor in determining the versioning approach is how to inform the sender what format

they can use to communicate with the recipient, as in all cases the recipient is the gating factor.

The Hub directory is where all message formats are listed that a recipient accepts – although not explicitly

defined as the formats, they are routingID’s, they serve the same function.

To version control a message format without changing its name would require another level of information

within the Hub to relate the version of the message and then logic on both the sender and receiver side to

interpret the message in specific ways depending on that version and its contents.

TOTSCo PUBLIC

30 of 30

Taking the approach of simply introducing a new message format name makes this much simpler, no changes

needed to the Hub, and a much clearer communication to the builder and processor of that message what

to do with it right up front. This is therefore the recommendation for how new versions of messages should

be managed within processes using the Hub.

The next question relates to what drives a message format version change. The consideration here is where

a change can be considered minor, adding optional elements to a message for example, or major, renaming

an element.

Any system parsing JSON messages should discard elements they are not expecting, most if not all JSON

parsers support that capability and was one of the main reasons for choosing JSON as the messaging

standard.

Consider a switch match request requires adding a new element called clientContactNumber, that can be

considered a minor, non-destructive change and the element made optional. Consumers would update their

systems when they are ready to make use of that element, but it does not break the process or messaging if

you have not yet added support for it and simply ignore the element.

Now consider we rename the services element in the matching request (a bad thing to do, but as an example),

and we change it to serviceList. That is clearly a major, destructive change. In this case the message format

name should be changed from residentialSwitchMatchRequest to residentialSwitchMatchRequestv2 as the

structural format is different and therefore the processing of existing consumers of that message would

break.

As the directory holds the supported message formats, it will be incumbent on the message sender to ensure

that they use the appropriate format for the intended recipient. If provider A supports v1 and v2 of the match

request but provider B only supports v1, then when provider A is creating a match request to BT it would

know it had to create the message in the v1 format as v2 isn't yet supported by provider B.

Through industry consultation, process owners will agree on the message format changes, the most

appropriate way of updating them, and how to control the versions.

End of Document

